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ABSTRACT

Single image rain streaks removal is extremely important
since rainy condition adversely affects many computer vision
systems. Deep learning based methods have great success
in image deraining tasks. In this paper, we propose a novel
residual-guide feature fusion network, called ResGuideNet, for
single image deraining that progressively predicts high-quality
reconstruction while using fewer parameters than previous
methods. Specifically, we propose a cascaded network and
adopt residuals from shallower blocks to guide deeper blocks.
We can obtain a coarse-to-fine estimation of negative residual
as the blocks go deeper with this strategy. The outputs of
different blocks are merged into the final reconstruction. We
adopt recursive convolution to build each block and apply
supervision to intermediate de-rained results. ResGuideNet is
detachable to meet different rainy conditions. For images with
light rain streaks and limited computational resource at test
time, we can obtain a decent performance even with several
building blocks. Experiments validate that ResGuideNet can
benefit other low- and high-level vision tasks.

1 INTRODUCTION

Rain streaks degrade visual quality on images and videos.
Due to the block and blurred effect to objects in a rainy image,
undesirable result of many outdoor computer vision appli-
cations like object detection [22] will be adversely affected.
However, most existing algorithms are trained with well-
controlled conditions. Thus, designing an effective method
for removing rain streaks is desirable for a wide range of
practical applications. Deep learning has been introduced for
this problem since Convolutional Neural Networks (CNN)
have proven powerful for a variety of vision tasks.

However, existing models in rain streaks removal tasks
tend to learn negative residual within a single model, these
models have to be carefully designed with tones of param-
eters to capture different modalities of rain streaks. Also
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(a) Rainy image (b) Output of block1

(c) Output of block3 (d) Output of block5

Figure 1: Progressive high-quality result as blocks
go deeper, the SSIM of the output of block1, block3,
block5 is 0.927, 0.935, 0.943, respectively.

most methods optimized with Euclidean distance that will
inevitably generate blurry predictions since the per-pixel
losses do not close to perceptual difference between output
and ground-truth images as human visual perception [14].
Further, it is wasteful to utilize a resource-hungry model to
meet all kinds of demands for rain streak removal tasks. For
example, under light rainy conditions, a simple model can
obtain a decent derain result, whereas a heavy rainy image
should be handled with a computationally intensive model
to detect rain streaks with different shapes and scales.

To address above drawbacks, we propose the residual-guide
feature fusion network (ResGuideNet) in a cascaded architec-
ture. Each block contains a global shortcut to predict residual
[8] which can make the learning process much easier. How-
ever, a simply cascaded basic building blocks is of difficulty
to improve the reconstructed quality in deeper blocks. We
conjecture that it is because a cascaded architecture may lost
valuable intermediate reconstruction features which makes
the deeper blocks difficult to learn new rain streak pattern.
We then proposed to concatenate the predicted residuals
from shallower to the deeper blocks. By using this simple op-
eration, the shallower residuals can guide deeper predictions
to generate a finer estimation as shown in Figure 1.

https://doi.org/10.1145/3240508.3240694


……

Merge

3 ×3 

conv
copy element-wise add concatenate

……

conv features negative residual features

Merge

……

Recursive 

Block1

Recursive 

BlockT

BlockK

merge 

operation

X

r1 ŷ1 r2 ŷ2 r3 rN

x x0
x1 xT

xt

ŷN-1

1 ×1

 conv

Y

Figure 2: The proposed structure of our rain streak residual-guide network(ResGuideNet)

In addition, we apply supervision to all intermediate out-
puts which can obtain a coarse-to-fine rain streak residual
as the blocks go deeper. The basic rain streak removal block
is based on recursive computations with a proper shortcut
strategy to reduce the number of network parameter while
keeping good deraining performance. The final recovered
image is obtained by merging all outputs of intermediate
reconstruction which can be viewed as an ensemble learning.

The contributions of our paper are three-fold:

(1) We build a single and separable network that can han-
dle different rainy conditions. By maintaining negative
residual features in shallow blocks to deep blocks, a
coarse-to-fine estimation of negative rain streaks residu-
al can be obtained. As the application scenario changes,
the user can detach a portion of our model to meet
varying computational requirements at test.

(2) We apply supervision to all the intermediate and final
reconstructions with a combined loss function. The
proposed model combines all intermediate results to
obtain the final result, which can be viewed as ensemble
learning.

(3) We discuss how ResGuideNet can be applied to other
low-level vision tasks including denoising and the recon-
structed images could benefit down-stream applications
such as object detection.

All our code and data will be made publicly available.1

2 RELATED WORKS

Depending on the input format, existing rain streak removal
algorithm can be roughly categorized into video-based meth-
ods and single-image methods. For video-based methods [1]
[2] [17] [9] [25], inter-frame information between adjacent
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frames is leveraged to identify rainy region and remove rain
streaks.

Removing rain streaks from single-image is more chal-
lenging since less information can be utilized. [15] attempts
to extract rain streaks and background details from high-
frequency layer by sparse-coding based dictionary learning.
[21] proposes a framework to rain removal based on discrimi-
native sparse coding. [19] learn background from pre-collected
natural images and rains from rainy images by utilizing two
Gaussian mixture models (GMMs).

Deep learning has also introduced for restoration problems
and convolutional neural networks (CNN) have found great
success in processing many computer vision problems. The
first CNN-based method for single image deraining was intro-
duced by [7]. The authors build a relative shallow network
with 3 layers to learn the mapping function. In [8], combining
with ResNet [11] [10], the authors present a deep detail net-
work (DDN) to learn residual with the high frequency part
of rainy images. In [33], the author proposed a conditional
GAN-based algorithm for removal of rain streak from a single
image. [30] learn binary rain region mask rand remove the
rain streaks simultaneously through a multi-scale network
(JORDER). [32] utilize the rain density information with
a multi-stream densely connected network (DID-MDN) for
jointly rain-density estimation and deraining. Further, single
image dehaze [4] [24] [18] [31] achieving promising result by
introducing deep learning models.

In image restoration field, achieving good performance
with a moderate number of network parameters is an im-
portant goal for designing a deep neural network, [26] [6]
[20] proposed to reuse the same convolutional filter weight
to learn hierarchical feature representation. In order to avoid
gradient vanishing problems and reduce the total parameters
for very large deep models, [16] [27] proposed to use recursive
computation with proper supervision and shortcut to achieve
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(a) SSIM:1 (b) SSIM:0.735 (c) SSIM:0.918 (d) SSIM:0.937 (e) SSIM:0.951 (f) SSIM:0.955 (g) SSIM:0.958

(h) SSIM:1 (i) SSIM:0.885 (j) SSIM:0.968 (k) SSIM:0.971 (l) SSIM:0.973 (m) SSIM:0.975 (n) SSIM:0.976

Figure 3: Comparasion under heavy and light rainy conditions using our ResGuideNet, (a) and (h) are clean
image. (b)and (i) is the synthetic rainy image under heavy rain condition and light rain condition, respectively.
(c)-(g) (j)-(n) are the results from block1 to block5 of ResGuideNet under heavy and light rainy conditions,
respectively.

state-of-the-art performance in single-image super resolution
while using few parameters.

3 METHOD

3.1 Motivation

Since rain streaks are always overlapped with background
texture, most methods tend to learn the negative residual
of its input with a complex or carefully designed model.
However, this may lead to an over-smoothed result and need
tons of parameters to optimize. Also, it is infeasible to apply
a resource-hunger model to process video frame-by-frame for
its time-consuming processing. On the other hand, to meet
different kind of demands in practical applications, a light
weight or detachable network is desirable since their huge
number of parameters will limit their application in mobile
device, automatic driving and video survillence. However,
existing methods use a fixed computational budget to handle
both ”easy” and ”hard” application scenarios. This is less
flexible for a model to implement in real-world application.

As is evident in Figure 3, we test our ResGuideNet under
heavy and light rain streaks conditions. We can observe our
method has a progessively better reconstruction as blocks go
deeper. However under light rainy condition, the SSIM [29]
does not improve much since block2 to block5, as shown in
Figure 4.

Thus, we would like to build a model that receives good
results on all devices, with varying computational constraints
of all devices. Furthermore, users can improve the average re-
construction quality by reducing the amount of computation
that spent on light rain condition to save up computation for
heavy cases.

Motivated by the prior work that has a resouce-efficient
implementation [12], we aim to construct CNN that is able
to slice the network to meet the computational limitation
to process rain streaks under different rainy conditions. Un-
fortunately, deep neural network is inherently related with
the early-existed features. Thus, we build a model that incor-
porates a series of deraining sub-networks and progressively

Figure 4: Deraining result with ResGuideNet under
heavy and light rain conditions, we obtain the result
on the test datasets and averaged them. We can ob-
serve the reconstruction does not improve much for
light rain condition since block2 to block5 .

generate a cleaner estimation given a rainy input. We can
also use a portion of the whole model to handle different
rainy conditions.

3.2 Residual Feature Reuse

A major challenge for deep learning models is its optimization.
To address the gradient vanish problem in back propagation,
shortcuts have been proposed to stabilize the gradient flow
in deep residual networks (ResNet). By assuming that the
residual mapping is much easier to learn than the original
unreferenced mapping, residual network explicitly learns a
residual mapping for a few stacked layers. With such strate-
gy, deep neural networks can be easily trained and therefore,
ResNet has achieved very impressive performance on the a
number of tasks. Also, [13] proposed to concatenate feature
maps densely from lower to deeper layers which can alleviate
the gradient vanishing problem and reduce the number of
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(a) SSIM: 0.716 (b) SSIM:0.897 (c) SSIM:0.908 (d) SSIM:0.910 (e) SSIM:0.908 (f) SSIM:0.929

(g) SSIM:1 (h) SSIM:0.894 (i) SSIM:0.924 (j) SSIM:0.937 (k) SSIM:0.945 (l) SSIM:0.948

Figure 5: Comparasion between Baseline model and Baseline model with residual reuse (Baseline-RR) on a
single test image, (a) is the synthetic rainy image , (g) is clean image , (b)-(f) are the results from block1 to
block5 of Baseline, (h)-(l) are the result from block1 to block5 of Baseline-RR.

Figure 6: Comparison of SSIM between Baseline
model and Baseline with residual reuse (Baseline-
RR).

model parameters. It may be interpreted as there is no need
to relearn redundant features. [28] has introduced dense con-
nection in regression tasks and has shown densely connections
could benefit the long-term memories and the restoration of
mid/high frequency information.

In this paper, we adopt global residual learning with a long
shortcut in each block to ease the learning process. Each block
consists of several convolutional layers using Leaky Rectified
Linear Units, we refer this architecture as Baseline model.
However, simply cascaded blocks cannot obtain promising re-
sults. We conjecture that deeper blocks is difficult to extract
new rain streak patterns and the intermediate reconstructions
from lower blocks contain valuable information have lost. In
order to deal with this problem, we suggest to integrate infor-
mation from previous blocks to deeper ones, compensating
information and further enhance high-frequency signals.

We evaluate the benefit of the transition from natively
cascading deraining blocks (Baseline) to our adopted nega-
tive residual reuse (Baseline-RR) by feature fusion strategy

(a) Rainy image (b) Baseline (c) Baseline-RR

Figure 7: Features with/without residual reuse.

using 5 blocks. For fair comparison, we increase the number
of feature maps in each building block of Baseline model to
have the same parameters with Baseline-RR. We conduct the
experiments on the dataset provided by [8]. As is clear from
the visual quality of reconstruction in Figure 5, Baseline-RR
obtain a more eye-pleasing reconstruction and a higher SSIM
value as the blocks go deeper. In Figure 6, Baseline-RR ob-
tains a gradual increase on SSIM as the block becomes deeper,
whereas the Baseline model does not possess this property,
the SSIM value is based on averaging all test images.

We further show the 16 feature maps of Baseline-RR and
Baseline model in Figure 7, we can observe the 16 feature
maps of Baseline-RR have larger activations on rain streaks in
the 2nd layer of Block2 than Baseline model. This is because
Baseline-RR incorporates rain streaks residual of Block1 to
suppress image contents in features for the residual learning
process.

3.3 Loss Function

Since rain streaks are blend with object edges and background
scene, it is hard to distinguish between rain streaks and
objects’ structure by simply optimizing ℓ2 loss function. Per-
pixel losses cannot capture perceptual difference between
output and ground-truth images as human visual perception.
A model with ℓ2 loss tend to result in a blurred reconstruction.
Therefore, for each block we adopt ℓ2+SSIM loss [29] which
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Figure 8: Comparison of Baseline-RR using different
loss function.

can preserve global structure better as well as keeping per-
pixel similarity. We minimize the combination of those loss
functions in training stage. Figure 8 shows the effectiveness
of the implementation of SSIM loss with ℓ2 loss and proves
that the supervision to intermediate outputs could benefit
the whole model. Note that, the above experimental result is
obtained by averaging 100 test images of dataset [8].

The overall loss function for block𝑘 is

𝐿𝑀𝑆𝐸𝑘 =
1

𝑁

𝑁∑︁
𝑖=1

(‖𝑓𝑘(𝑋𝑖,𝑊, 𝑏)− 𝑌 ‖22.

𝐿𝑆𝑆𝐼𝑀𝑘 =
1

𝑁
log(1.0/𝑔(𝑓𝑘(𝑋𝑖,𝑊, 𝑏), 𝑌 ) + 1𝑒−4).

𝐿𝐵𝑘 = 𝐿𝑀𝑆𝐸𝑘 + 𝜆 * 𝐿𝑆𝑆𝐼𝑀𝑘 .

(1)

where 𝑁 is the number of training rainy patches, 𝑘 indicate
the index of block. 𝑋, 𝑌 and 𝑋𝑖 indicate rainy patches, corre-
sponding clean patches and the input of block𝑖, respectively.
𝑊 and 𝑏 are the parameters in our model that need to tune.
𝑓 denotes function mapping of each block. 𝑔 denotes the
function of SSIM. 𝜆 is the hyperparameter that balance the
MSE loss and SSIM loss, we set 𝜆 as 1 via cross-validation
that achieving satisfying result.

Note the overall ResGuideNet loss that containing 𝑀 + 1
loss function terms if the ResGuideNet contains 𝑀 blocks

𝐿 =
1

𝑀 + 1
(

𝑀∑︁
𝑖=1

𝐿𝐵𝑘 + 𝐿𝑀𝑒𝑟𝑔𝑒). (2)

where L𝑀𝑒𝑟𝑔𝑒 is the final reconstruction merged by all previ-
ous intermediate outputs, with the same format of 𝐿𝐵𝑘 .

3.4 Recursive Computation

As we mentioned above, the trade-off between the number of
parameters and the model performance can be overcame using
recursive strategy where the the nonlinear mapping operator
is shared within each block. We adopt two convolutional
operation in each recursive unit. We can write the structure
of the input and output relationship in the 𝑡𝑡ℎ and (𝑡+ 1)𝑡ℎ

(a) SSIM:0.8181 (b) SSIM:0.9506

(c) SSIM:1 (d) SSIM:0.9585

Figure 9: Comparasion between Baseline and
Baseline-RR, (a) rainy image, (c) clean im-
age, (b) is the result of ResGuideNet without
Recursion(ResGuideNet-NRecur), (d) is the result
of ResGuideNet .

recursion (1 ≤ 𝑡 < 𝑇 ) within each block as

xt = g
(︀
xt−1)︀ , xt+1 = g

(︀
xt)︀ , (3)

where 𝑔 indicates each recursive unit within one block.
However, as the recursions continue, the network depth

increases, which introduces a severe gradient vanish problem
that makes training difficult. To solve the gradient vanish
problem as the recursion continues and to propagate infor-
mation more easily, the output feature map of first feature
extraction Conv+LReLU structure is fed into all subsequent
outputs of recursive blocks. We can reformulate the structure
as

xt = g
(︀
xt−1)︀+ x0, xt+1 = g

(︀
xt)︀+ x0, (4)

The recursive computation is shown in bottom-left of Fig-
ure 2. We evaluate the benefit of transitioning from Res-
GuideNet without recursion (ResGuideNet-NRecur) to our
adopted ResGuideNet using 5 recursions in each block. We
show the quanlitative result in Figure 9. As is eveident, k-
ernel reuse and propagate all information forward directly,
from output of the first layer within each block, benefit the
restoration process of image content.

Table 1: Performance of ResGuideNet5 and Res-
GuideNet.

ResGuideNet5 ResGuideNet

SSIM 0.960 0.961
PSNR 29.92 30.11
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(a) Clean image (b) Rainy imag (c) GMM (d) DDN (e) JORDER (f) DID-MDN (g) Ours B3 (h) ResGuideNet

Figure 10: Three results on synthetic images.

(a) Rainy image (b) GMM (c) DDN (d) JORDER (e) DID-MDN (f) ResGuideNet

Figure 11: Five results on real-world rainy images with different rain magnitudes and shapes.

Table 2: Averaged SSIM and PSNR value on JORDER [30]’s dataset with their parameter number. Red
indicates the best and blue indicates the second best performance.

Rainy images GMM [19] DDN [8] JORDER [30] DID-MDN [32] ResGuideNet3 ResGuideNet

Rain100H 13.56/0.379 15.05/0.425 21.92/0.764 26.54/0.835 24.53/0.799 24.74/0.815 25.25/0.841

Rain100L 26.90/0.838 28.66/0.865 32.16/0.936 36.63/0.974 29.50/0.907 32.82/0.960 33.16/0.963

Rain12 30.14/0.855 32.02/0.910 31.78/0.900 33.92/0.953 28.25/0.906 29.19/0.936 29.45/0.938

Parameters - - 58,175 369,792 ≈135,800 19,404 37,065

3.5 Inter-block Ensemble

[3] first well studied the idea of ensemble learning which
combines predictors instead of selecting a single predictor,
ensemble learning has also introduced in neural networks

to improve performance. [5] arranged a committee of neural
networks in a simple voting scheme, and the final output
predictions is based on the averaged result. Recently, [10] [13]
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Table 3: Evaluation on DDN’s synthetic dataset.

Metric GMM DDN JORDER

PSNR/SSIM 26.33/0.838 31.12/0.926 32.95/0.921

Metric DID-MDN ResGuideNet3 ResGuideNet

PSNR/SSIM 31.35/0.941 30.79/0.939 31.38/0.950

using deep neural networks to deel with several computer
vision tasks also use the ensemble technique.

Motivating by ensemble idea, we integrate all intermediate
reconstruction of each block to form the best reconstruction
which is aggragated by concatenation. As is shown in the
bottom-right of Figure 2, the final reconstruction is obtained
from the fusion of all intermediate reconstructions by a 1×1
convolution. Note that, we only use the merged result in
section 4 since it is convenient for comparison in other sections.
We refer the output with merging operation as ResGuideNet
while the output of block𝑖 as ResGuideNet𝑖. We can observe
an improved result from Table 1. The experiment is conducted
on the test dataset of [8].

3.6 The Proposed Architecture

As discussed, the proposed ResGuideNet consists of repeated
blocks. Each block includes several convolutional kernels and
a global shortcut. The ResGuideNet propagates rain streak
residual information from shallow blocks into deeper ones.
The network architecture is shown in Figure 2. The final
reconstruction is obtained by concatenating all intermediate
outputs and compressed them into the final rain-streak resid-
ual. ℓ2+SSIM supervision is applied to guide each blocks and
the final merged output.

Our basic network structure can be expressed as:

𝐹1 (𝑋) = 𝑟1, 𝑦1 = 𝑋 + 𝑟1.

𝐹2 (𝑦1; 𝑟1) = 𝑟2, 𝑦2 = 𝑋 + 𝑟2.

𝐹3 (𝑦2; 𝑟2, 𝑟1) = 𝑟3, 𝑦3 = 𝑋 + 𝑟3.

· · · · · ·

𝐹5 (𝑦4; 𝑟4, 𝑟3, 𝑟2, 𝑟1) = 𝑟5, 𝑌 = 𝑋 + 𝑟5.

(5)

where 𝐹 indicates different blocks that consist of several
convolutional layers using Leaky Rectified Linear Units. 𝑋
and 𝑌 indicate rainy and clean pairs. 𝑟 indicates negtive
residual that is the output of each block. Block𝑖’s input is
expressed as 𝑦𝑖−1 . Note that the left side of the semicolon
indicates input of each block while the right side indicates
residual features to guide each block. It is shown that more
guidance provided when the blocks go deeper. 𝑟1, 𝑟2, 𝑟3 · · ·
𝑟𝑁 all should be approximated to 𝑌 −𝑋 in training stage as
indicated in Equation 1, thus it is easier for deeper blocks to
learn new rain streaks information with the guidance of rain
streaks residual in shallow blocks.

4 EXPERIMENTS

We compare our algorithm with several state-of-the-art deep
and non-deep techniques on synthetic and real-world datasets.

4.1 Implementation details

We train and test the algorithm using TensorFlow for the
Python environment on a NVIDIA GeForce GTX 1080 with
8GB GPU memory. We use the Xavier method to initialize
the network parameter and RMSProp for parameter learning.
We select the initial learning rate to be 0.001. We set the
size of training batch to 16. 50,000 iterations of training were
required to train ResGuideNet. For all experiments we set
the filter size to be 3× 3 except the merge convolution and
each convolution layer has 16 feature maps.

4.2 Dataset

Since clean and rainy image pairs from real-world is hard to
obtain, four synthetic datasets are aviable for comparison.
[30] provide 𝑅𝑎𝑖𝑛100𝐻 and 𝑅𝑎𝑖𝑛100𝐿 that is synthesized
with heavy and light rain, each of them contains 100 images
for test. The third dataset called 𝑅𝑎𝑖𝑛12 collected by [19]
which contains 12 syhthetic images. The last one is provid-
ed by [8] constains 10K pairs of rainy/clean images with
different orientations and magnitudes of rain streaks. For
fair comparision, we conduct experiment that train the deep
learning-based models and test them on 𝑅𝑎𝑖𝑛100𝐻 and for
𝑅𝑎𝑖𝑛100𝐿 datasets, the model trained on 𝑅𝑎𝑖𝑛100𝐿 is used
to test 𝑅𝑎𝑖𝑛12. Besides, we use the training dataset provide
by [8] to train all models and test them on [8]’s test dataset.
During training stage, We randomly generate 0.8 million
rainy/clean patch pairs with size of 128×128 in the training
stage.

4.3 Evaluation on Synthetic dataset

We train and test all the methods with the same dataset [30]
[19]. SSIM [29] and PSNR are adopted to perform quantita-
tive evaluations shown in Table 2 and Table 3. Our method
has a comparable SSIM values with JORDER while outper-
forming other methods, which is in consistent with the visual
result. We can observe the intermediate result in the third
block (ResGuideNet3) even has a decent result compared
with other methods in Figure 10. However, our ResGuideNet
contains far fewer parameters than others and can be sliced
into a smaller network to meet light rain condition with
limited resources, potentially making ResGuideNet easily
implemented in varying real-world applications.

4.4 Evaluation on Real-world dataset

In this section, we show that ResGuideNet trained on synthet-
ic training data still works well on real-world application. We
implement other methods according to their optimal setting.
Figure 11 shows visual results on real-world rainy images.
Since no ground truth exists, we only show their qualitative
result. As shown, ResGuideNet generate a less blurred result
and have promising results on multiple kind of rain streaks.

4.5 Running Time

To illustrate the efficiency of implementation of ResGuideNet
in practical application, we show the average running time
of 100 test images in Table 4, all the test are conducted
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Table 4: Running time of different methods.

GMM DDN JORDER DID-MDN ResGuideNet3 ResGuideNet

CPU 1990 1.51 295 4.20 1.26 3.15
GPU - 0.16 0.18 0.14 0.06 0.11

with a 500×500 rainy image as input. The GMM is non-
deep method that is run on CPUs according to the provided
code, while other deep-based methods are tested on both
CPU and GPU. All experiments are performed with the
same environment described in implementation details. The
GMM has the slowest running time since it has complicated
inference at test time. Our method has a fast computational
time on GPU compared with other methods. In a light rain
condition, we can use the third block as final output for
testing that has a even faster running time. This experiment
shows ResGuideNet has a promising practical value.

5 EXTENSION

5.1 Generalization to other image
processing tasks

In this section, we show more evaluations for other general
image processing tasks. We trained our ResGuideNet and [34]
with the train and val set of berkeley segmentation dataset
500(BSD500). We use the training set which contains 300
images for training and the test set of BSD500 contains 200
images for testing. We apply Gaussian noise with differen-
t standard deviation to both train and test datasets. The
averaged SSIM is shown in Table 5. This experiment demon-
strates that ResGuideNet can generalize to similar image
restoration problems.

Table 5: Denosing results.

𝜎=10 𝜎=30 𝜎=70

DnCNN [34] 0.968 0.912 0.818
ResGuideNet 0.963 0.914 0.831

5.2 Pre-processing for high-level vision
tasks

Most exsting models for high-level tasks is trained with a well
scenario, the performance will be degraded in rainy conditions
since rain streaks block and blur the key structure of objects,
Figure 12 show a case that under heavy rainy condition, the
pre-trained Faster R-CNN [23] model trained on a well condi-
tion of KITTI dataset that failed to capture some objects and
produce a low recognition confidence. We incorporate our
ResGuideNet as a pre-process model for the Faster R-CNN,
the detection performance has a great improvement over the
naive Faster R-CNN input with a degraded image. We also
add experiments on vehicle detection before and after derain-
ing using our model on both synthetic dataset and real-world

(a) Rainy image (b) Our result

Figure 12: An example of detection.

rainy images, the experiments conducted on 480 synthetic
rainy images from KITTI dataset and 20 real-world rainy
images with manually annotation. The AP improves from
0.725 to 0.833 and from 0.591 to 0.657, respectively.

6 CONCLUSION

We presented the ResGuideNet, a novel convolutional net-
work architecture for single image deraining which is easy to
implement in a number of practical applications. We build
our model with several deraining sub-networks in a cascaded
manner. By propagating negative residuals in shallow blocks
to deeper ones, the deeper blocks effectively extract new
information of negative rain streak residuals to generate rain
residual in a coarse to fine fashion. The final reconstruction
takes all intermediate outputs into account to leverage more
informations across blocks which can be viewed as ensemble
learning. With our proposed architecture, ResGuideNet has
37𝐾 and ResGuideNet3 has less than 20𝐾 parameters while
still achieving good performance. For different rain conditions
and computational resources, we can detach ResGuideNet
into a smaller size can still achieve decent reconstruction.
Moreover, extensive experiments have shown that our Res-
GuideNet can generalize to other low-level tasks and has
potential value for high level vision problems.
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