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Abstract

Compressed sensing magnetic resonance imaging (CS-MRI)
is an active research topic in the field of inverse problems.
Conventional CS-MRI algorithms usually exploit the sparse
nature of MRI in an iterative manner. These optimization-
based CS-MRI methods are often time-consuming at test
time, and are based on fixed transform bases or shallow
dictionaries, which limits modeling capacity. Recently, deep
models have been introduced to the CS-MRI problem. One
main challenge for CS-MRI methods based on deep learning
is the trade-off between model performance and network size.
We propose a recursive dilated network (RDN) for CS-MRI
that achieves good performance while reducing the number of
network parameters. We adopt dilated convolutions in each
recursive block to aggregate multi-scale information within
the MRI. We also adopt a modified shortcut strategy to help
features flow into deeper layers. Experimental results show
that the proposed RDN model achieves state-of-the-art per-
formance in CS-MRI while using far fewer parameters than
previously required.

Introduction
Magnetic resonance imaging (MRI) is a non-invasive med-
ical imaging technique with the advantages of being high
resolution and low radiation. The major limitation of MRI
is its relatively slow imaging speed. This problem is criti-
cal because patients must remain still in the scanner for long
periods of time to reduce motion artifacts. Different hard-
ware and software strategies exist to accelerate MRI. Among
them, compressed sensing (CS-MRI) is popular because no
additional hardware is required, thus reducing extra costs.

According to compressed sensing theory (Candès,
Romberg, and Tao 2006; Donoho 2006), for MRI signals
that can be sparsely represented in an appropriate transform
basis, far fewer k-space (Fourier transform) measurements
are necessary for accurate MRI reconstruction than suggest-
ed by the traditional Nyquist sampling theorem. In previous
work on CS-MRI, focus has been on proposing better ob-
jective functions and efficient optimization algorithms to ex-
ploit this fact. Our contribution will be to the former task, but
we observe that processing of new MRI using deep learning
will require no new optimizations, and so be very fast.
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CS-MRI was pioneered by SparseMRI (Lustig, Donoho,
and Pauly 2007). Since then, contributions have been made
to efficient optimization of the SparseMRI objective, such
as TVCMRI (Ma et al. 2008), RecPF (Yang, Zhang, and Yin
2010), and FCSA (Huang, Zhang, and Metaxas 2011). Oth-
er objectives choose different wavelet regularizations based
on geometric information, such as PBDW/PBDWS (Qu et
al. 2012; Ning et al. 2013) and GBRWT (Lai et al. 2016),
or dictionary learning techniques such as DLMRI (Ravis-
hankar and Bresler 2011) and BPTV (Huang et al. 2014).

Three potential issues arise with these methods:
1. Most methods are performed “in situ,” meaning only in-

formation from the MRI of interest is used and any other
potential MRI data ignored. While some methods are able
to consider recurrent structure across MRI, such as NLR
(Dong et al. 2014), PANO (Qu et al. 2014) and BM3D-
MRI (Eksioglu 2016), they are usually implemented on a
single MRI.

2. Data complexity is not sufficiently modeled. For exam-
ple, with dictionary learning methods (Ravishankar and
Bresler 2011; Huang et al. 2014) the patches of MRI are
reconstructed using linear combinations of learned atoms
and sparse coefficients. While structural sparsity has been
introduced toward fixing this problem (Chen and Huang
2012), linear-based models are inherently less complex.

3. Optimizing the objective function for new MRI may time-
consuming because they require iterative procedures. This
may limit their use for real applications.
To address these limitations, deep learning models have

been adopted for CS-MRI to exploit the large amount of syn-
thetically available training data. Deep neural networks can
also help model the intricate structures across various MRI.
Finally, after training the network, the feed-forward testing
of new MRI does not require new iterations and is extremely
fast. The first work devoted to introducing deep learning to
CS-MRI is (Wang et al. 2016). In their paper, a vanilla CNN
model is directly used to learn the mapping from a zero-
filled input MRI to the fully-sampled output MRI, which is
also corrected with an additional data fidelity term. Subse-
quent papers have proposed a modified U-Net architecture
(Lee, Yoo, and Ye 2017), and deep cascading of the CNN
(DC-CNN) (Schlemper et al. 2017), which is currently the
state-of-the-art CS-MRI inversion technique.



The major problem in deep learning for CS-MRI is the
trade-off between model performance and the number of
network parameters. It has been shown that deeper network
architectures can result in better network performance. But
increasing model complexity requires more intensive com-
putational and memory requirements. To achieve a balance
between the number of network parameters and model per-
formance, we propose a recursive dilated network (RD-
N) for CS-MRI. Using recursive computations reduces the
number of network parameters, while dilated convolutions
increase the receptive field to aggregate multi-scale informa-
tion. A modified shortcut strategy is also employed to help
propagate features to deeper layers directly. Our experiments
show that the proposed RDN model improves upon the DC-
CNN model while using far fewer parameters.

Related Work
In this section, we review the previous work and concepts
from deep learning that are used in our proposed objective
function for CS-MRI reconstruction.

Recursive learning Achieving good performance with a
moderate number of network parameters is an importan-
t goal for designing deep neural networks. A design strat-
egy called recursive learning aims at learning hierarchical
feature representations by reusing the same convolutional
filter weights, e.g., (Socher et al. 2012; Eigen et al. 2013;
Liang and Hu 2015). Sharing filters can significantly reduce
the storage requirements for very large deep models. For
example, Deeply Recursive Convolution Networks (DRC-
N) (Kim, Kwon Lee, and Mu Lee 2016) use a very deep
recursive layer (up to 16 recursions) to improve the mod-
el capacity without introducing more parameters. Similarly,
Deep Recursive Residual Networks (DRRN) (Tai, Yang, and
Liu 2017) use recursive learning to achieve state-of-the-art
performance in single-image super resolution with fewer pa-
rameters.

Residual learning A major challenge for deep learning
models is the optimization. To address the gradient van-
ish problem in back propagation, shortcuts have been pro-
posed to stabilize the gradient flow in deep residual networks
(ResNet) (He et al. 2016b; 2016a). In this model, every two
convolutional layers include a shortcut as the basic residual
block. ResNet has achieved very impressive performance on
the ImageNet task.

Dilated convolutions Dilated convolutions were first pro-
posed by (Yu and Koltun 2015) for the dense prediction task.
Because an image contains repeated structural patterns at d-
ifferent scales, it is reasonable to model these features for
visual tasks. Dilated convolutions, in which the same filter
is increased in scale, can increase the receptive field to learn
multi-scale features without sacrificing resolution or intro-
ducing additional parameters. (Yu, Koltun, and Funkhous-
er 2017) modified ResNet by proposing a residual dilated
network, where dilated convolutions take the place of the
under-sampling operation.

(a) Full-sampled image (b) Zero-filled reconstruction

Figure 1: A fully-sampled MRI and a zero-filled reconstruc-
tion using a 55% under-sampling Cartesian mask. We ob-
serve that artifacts in the zero-filled reconstruction are highly
structured and significantly impair diagnostic information.

Method
Problem formulation
MRI machines directly measure the Fourier coefficients of
an object (called k-space data), after which an inverse trans-
form produces the image. We denote the vectorized fully-
sampled k-space data as yfs ∈ CN×1, and the resulting
fully-sampled MRI as xfs ∈ RN×1. The under-sampled
(i.e., compressively sensed) k-space measurements can be
represented by y ∈ CM×1, where M � N . The measured
vector y is simply a sub-vector of yfs. Replacing all unmea-
sured values with a zero followed by the inverse transform
produces a “zero-filled MRI” xzf ∈ CN×1. Zero-filled MRI
are usually significantly degraded with artifacts and unus-
able for diagnostic applications, as shown in Figure 1.

The conventional CS-MRI inversion problem can be for-
mulated as follows,

x̂ = arg min
x

‖Fux− y‖22 +
∑
i

αiΨi (x), (1)

where Fu ∈ CM×N is the under-sampled Fourier opera-
tor matrix corresponding to the measured k-space location-
s. Thus the zero-filled MRI xzf can be calculated as FH

u y.
The first term is the data fidelity which enforces consisten-
cy between k-space values of the reconstructed image and
the measured data. The second term Ψi regularizes the so-
lution space, while αi balances the importance of the two
terms. Usually sparse regularization is imposed on Ψi via an
l1 norm or l0 norm.

When the CS-MRI problem is addressed using deep learn-
ing models, a nonlinear mapping from the zero-filled MRI
xzf to the fully-sampled MRI xfs is learned via a deep net-
work model using many synthetically generated training ex-
amples. A new MRI can then be reconstructed through a fast
feed-forward process on the input data. This requires no it-
erations, and so MRI reconstruction with deep learning is
often much faster than conventional methods.

Building blocks of the proposed formulation
We propose a recursive dilated network (RDN) by cascading
a series of basic blocks, which each consists of a recursive



(a) Plain CNN recursion unit

(b) ResNet recursion unit

(c) RDN recursion unit

Figure 2: We illustrate three different recursive methods. The first and last Conv+LReLU structure are designed to map the
image into feature maps and aggregate feature maps into an image, respectively. The same color indicates shared filters.

dilated unit and a data fidelity unit. We next introduce how
the recursive strategy and dilation are combined and give
details about the recursive method and dilation convolutions.
Then we briefly talk about the data fidelity unit and give the
architecture of the proposed RDN model.

Recursive methods As we mentioned above, the trade-off
between the number of network parameters and the mod-
el performance can be overcome using a recursive strategy,
where the nonlinear mapping operator is shared within a net-
work unit.

An intuitive idea is to use a recursive component T times,
which consists of convolutional layers with activation func-
tion as shown in Figure 2(a). For ease of training, we adopt
the global residual learning with a long global shortcut. Each
recursive component consists of several convolutional layer-
s using Leaky Rectified Linear Units (Conv+LReLU). The
number of Conv+LReLU is not restricted; for illustration we
use 2 recursive Conv+LReLUs per sharing component. In
the figure we denote the sharing of the convolutional filters
by using the same color. The first Conv+LReLU structure
is used as a feature extraction to transform the image into
multiple feature maps. The last Conv+LReLU is used as a
reconstruction to aggregate the multiple feature maps into
an image. We can notationally write the structure of the in-
put and output relationship in the tth and (t+ 1)th recursion
(1 ≤ t < T ) as

CNN : xt = f
(
xt−1) , xt+1 = f

(
xt
)
. (2)

Because the filters are reused recursively, each recursive
component represents the same mapping function f (·).
However as the recursions continue, the network depth in-
creases, which introduces a severe gradient vanish problem
that makes training difficult.

Naturally, a modified recursive strategy is to use the stan-
dard residual learning structure shown in Figure 2(b), where
the input of each recursive component is also feeded to the

output of the recursive component via a shortcut connection.
Similar to the Figure 2(a), we also adopt 2 Conv+LReLU
structures in each recursive component for illustration. Pre-
vious work has shown that residual learning with such a
shortcut has superior performance compared with the vanilla
CNN model because the mapping function is easier to learn.
We similarly formulate the structure as

ResNet : xt = f
(
xt−1)+ xt−1, xt+1 = f

(
xt
)

+ xt.
(3)

The function mapping f (·) is now only required to learn
a mapping from an input to the residual signal. However,
details contained in feature maps for low layers may be
lost if they are passed through too many layers of the net-
work. Therefore, our aim in the proposed CS-MRI model is
to propagate the original information from lower levels to
deeper levels directly.

An alternative approach is to send the feature maps from
low layers to the deeper layers as shown in Figure 2(c). We
observe that the output of the feature extraction Conv+ LRe-
LU structure x0 is fed into not only the input of the adjacent
recursive component, but also all subsequent outputs. This
propagates information from the lower feature maps direct-
ly to deeper layers. Again, we can formulate the structure
as

RDN : xt = f
(
xt−1)+ x1, xt+1 = f

(
xt
)

+ x1. (4)

We evaluated the benefit of transitioning from recursive
Plain CNN (Equation 2, Figure 2(a)), recursive ResNet (E-
quation 3, Figure 2(b)) to our adopted recursive strategy (E-
quation 4, Figure 2(c)) using 10 components recursions. We
show this performances in Figure 3 (The evaluation index
PSNR and SSIM will be elaborated in experiment section).
This experiment is conducted on 61 real-valued brain M-
R images using a 1D 30%-sampled Cartesian mask. As is
evident, propagating all information forward directly from
the input slightly outperforms a recursive version of ResNet.
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Figure 3: A comparison of recursive strategies using ResNet
(Figure 2(b)) and the proposed RDN (Figure 2(c)). We do
not use dilation in this experiment in order to directly com-
pare the two shortcut approaches as visualized in Figure 2.

(We also note that for all test cases, ResNet outperformed the
plain CNN.)

Dilated convolution In many deep neural network mod-
els, under-sampling operations such as pooling are used to
increase the receptive field, which increases the ability to
use larger contextual information contained in an image.
However, the pooling operation can create loss in resolution
and degrade model performance for pixel-level problems. To
avoid this loss, some models use convolutional kernels of
varying size to alter the receptive field, which comes at the
expense of a dramatic increase in parameters.

To achieve a balance between the receptive field size and
the number of filters, dilated convolutions have been pro-
posed. In Figure 4, we show how we use this technique in
combination with recursive learning to form the recursive
dilated unit. The kernels in the figure are of the same filter
size (FS), but have different dilation factor (DF).

In low-level vision tasks like image restoration and recon-
struction, contextual information at different scales is impor-
tant for removing noise or artifacts. The same analysis ap-
plies to the CS-MRI problem, since under-sampling k-space
brings significant artifacts as shown previously in Figure 1.
In this circumstance, a larger receptive field can help distin-
guish between the true structural details and artifacts.

We also compared the proposed RDN framework in E-
quation 4 with and without using dilated filters. These re-
sults are shown in Figure 5. The results give support for
using multi-scale filtering for the CS-MRI problem based
on PSNR and the SSIM measure. For this comparison, we
cascade 5 blocks, and each block includes recursive com-
ponents used 3 times, feature extraction and reconstruction.
The recursive components differ among the blocks. Each re-
cursive component consists of two Conv+LReLU structures.
For experiments with dilation, we use 1-dilation in first Con-
v+LReLU unit and 2-dilation in the second. For pure recur-
sive strategy, we only use 1-dilation convolution.

Data fidelity unit Image details can be degraded as the
network becomes deeper. For classification problems this is
ideal, since the goal is to “boil down” the information to a

Figure 4: Top: The dilated convolutions corresponding to
Figure 2(c). Bottom: A similar example when the dilation
factor grows up to 3 with the number of Conv+LReLU struc-
tures in each recursive component.
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Figure 5: A comparison of the proposed RDN shortcut strat-
egy with and without dilated filters. Multi-scale modeling
with dilation gives an improvement on 61 test images.

linearly classifiable vector, but for MRI a high-quality out-
put image is required. In addition to the modified shortcut
method described previously, which transmits the input in-
formation across all layers, we also introduce a “data fidelity
unit” to correct for the reconstruction error. From the sub-
sampled measurement y, we have accurate values for the
sampled positions in k-space space. This is valuable for cor-
recting any biases that accrue as the signal flows through the
nonlinear components down the neural network.

Similar to Equation 1, we solve the following objective
function with the data fidelity unit,

x̂ = arg min
x

λ

2
‖Fux− y‖22 + ‖x− xin‖22 , (5)

where xin is the input to the data fidelity unit and λ is the
regularization parameter. To enforce consistency between
the reconstruction and the measurements y, we set λ a large
value, e.g., 106. The second term can be viewed as the pri-
or guess, where the input image xin is reconstructed by the
deep neural network.

In practice, this can be automatically solved via back-
propagation using available software such as TensorFlow.
However, we note that the above least squares problem does
have a closed-form solution. We can simplify the problem



Figure 6: The flowchart of the proposed RDN network. Together the recursive dilation and data fidelity units comprise the basic
blocks. The blocks are cascaded to form an end-to-end network. The input is the k-space measurements (left-most image) and
the output is the reconstructed MRI (right-most image). The zero-filled reconstruction (second-left image) forms the basis for
reconstruction, but accuracy of the reconstruction in k-space is enforced at each block by the data fidelity unit.

by working in Fourier domain, after which the solution is

x̂ = FH λFFH
u y + Fxin

λFFH
u FuFH + I

, (6)

where the term FFH
u y is the Fourier transform of the zero-

filled reconstruction, the term FFH
u FuF

H is a diagonal ma-
trix with ones at the sampled locations and zeros otherwise.
Calling the feed forward function for this unit g (xin; y;λ),
the relevant gradient for model training is

∂g

∂xinT
=

I

λFFH
u FuFH + I

. (7)

We present these calculations for completeness, but again
note that current software can automatically handle the in-
clusion of this unit during network training.

Network architecture
As discussed, the proposed RDN framework consists of re-
peated blocks. Each block includes two units, one called a
recursive dilation unit and the other a data fidelity unit. We
show this network architecture of the RDN model in Figure
6. In our experiments, we use the following naming conven-
tion: If we cascadeN blocks, reuse the recursive component
T times in each block where the dilation factor goes up to F ,
we refer to the model as RDN-NB-FD-TR.

We can train the RDN network in an end-to-end manner
with training data consisting of multiple pairs of a k-space
measurement vector y and its corresponding fully-sampled
MRI xfs. We first feed the zero-filled MRI xzf constructed
from y into the RDN network. We denote the function of
the N th block as BN . Thus the output of the model can be
written as

B (y) = BN

(
BN−1

(
· · ·
(
B1

(
FH
u y
))))

. (8)

The corresponding loss function is

L =
1

2P

P∑
i=1

∥∥∥B (yi)− x(i)fs

∥∥∥2
2
, (9)

where the sum is over a mini-batch with P data. This net-
work can be efficiently optimized using, e.g., TensorFlow.

Experiments
We compare our algorithm with several state-of-the-art deep
and non-deep techniques on several brain MRI.

Implementation details We train and test the algorithm
using TensorFlow for the Python environment on a NVIDI-
A GeForce GTX 1080Ti with 11GB GPU memory. We use
the Xavier method to initialize the network parameter and
ADAM with momentum for parameter learning. We select
the initial learning rate to be 0.001, the first-order momen-
tum to be 0.9 and the second momentum to be 0.999. We
set the weight decay regularization parameter to 0.0001 and
the size of training batch to 8. 70000 stochastic iterations of
training were required to train the RDN model. For all exper-
iments we set the filter size to be 3× 3 and each convolution
layer to have 32 feature maps, except for the first and last
layers which map from and to the image space, respectively.

Dataset Our training data consists of 2800 normalized
real-valued brain MRI. The testing set consists of 61 brain
MRI. We collected the images using a 3T MR scanner. All
MRI are T1 weighted and of the same size (256× 256). Un-
less otherwise indicated, we use a Cartesian mask with 30%
sub-sampling rate.

Quantitative evaluation
We compare the RDN model with non-deep models FCSA,
PBDW, PANO, GBRWT, and two deep models U-Net (Lee,
Yoo, and Ye 2017) and DC-CNN (Schlemper et al. 2017).
For the non-deep methods, we use the software provided
by the authors on their homepage. For the deep models, we
re-implement according to the original paper specification-
s using TensorFlow. In the original paper of DC-CNN, the
authors implement a deep network with 5 blocks with each
block containing 5 convolution layers with ReLU activation.
For fair comparison, we adopt the RDN-5B-3D-3R to keep
the total number of network parameters the same, because
the number of convolution layer is same in both methods
and dilation brings no additional parameters. For U-Net, we
follow the same network architecture as the original paper,
which contains more parameters than DC-CNN.

For image reconstruction quality assessment we use two
popular measures: peak signal-to-noise ratio (PSNR) and
the structural similarity index measure (SSIM) (Wang et al.
2004). We compare testing results with other state-of-the-art
algorithms in Figure 7. In each plot, the x-axis corresponds
to the algorithm listed in the title and the y-axis is the pro-
posed RDN framework. We see that the points lie above the
diagonal line for each comparison, indicating that RDN out-
performs each algorithm. We also observe that the curren-
t state-of-art DC-CNN model clearly performs the second



(a) GBRWT (b) DC-CNN (c) RDN

Figure 9: Reconstruction errors using a 10% sub-sampled
2D radial mask.

(a) PSNR (b) SSIM

Figure 10: The comparison of model performance of DC-
CNN and RDN conditioned on the number of parameters.

best, while the other deep model U-Net does not provide an
obvious improvement over other non-deep methods.

Qualitative evaluation
We show the results on a brain MRI in Figure 8. As is
clear from the error images, RDN has state-of-the-art per-
formance. The colorbar ranges form [0 0.08]. To check per-
formance for other sampling masks, we experiment with a
10% sub-sampling radial mask and show qualitative results
on another MRI data in Figure 9. Results for radial sampling
were consistent with those using Cartesian sampling.

Discussion on the number of network parameter
The proposed RDN model achieves good performance while
keeping the overall network parameter number reasonably
low. We show performance of RDN and DC-CNN as a func-
tion of parameter number in Figure 10. For both, we use 3
blocks and only vary the number of parameters in each block
by changing the number of Conv+LReLU structure in each
recursive component, i.e., “FD” in our notation. In Figure
11 we show a reconstructed test MRI using the state-of-the-
art deep model DC-CNN having 38K parameters and our
RDN having 28K parameters (i.e., 10K fewer parameters).
While both significantly improve the zero-filled result, our
RDN model captures additional details while using fewer
parameters. From Figure 10, we see that quantitative perfor-
mance becomes comparable when RDN reduces further to
about 18K parameters, i.e., about half of DC-CNN. If the
depth of the proposed model is the same as vanilla CNN,
their computational complexity is almost the same.

(a) Zero-filled reconstruc-
tion

(b) Fully-sampled MRI

(c) DC-CNN reconstruction (d) RDN reconstruction

Figure 11: The comparison for zero-filled reconstruction,
full-sampled image, DC-CNN reconstruction and RDN re-
construction The experiment is conducted on a real-valued
brain MRI using 30% Cartesian under-sampling.

Discussion on the number of recursions
In Table 1 we show how a 5-block RDN model perform-
s as a function of the number of recursions within each
recursive dilated unit. Here we give the comparison of
RDN-5B-3D-1R, RDN-5B-3D-2R, RDN-5B-3D-3R, RDN-
5B-3D-4R and RDN-5B-3D-5R. The performance of the
RDN model improves as the number of recursion increases.
However, because parameters are reused in each recursion,
their number is fixed as a function of recursion number.

Table 1: Performance as a function of number of recursions.

Recursion 1 2 3 4 5

PSNR 39.91 40.37 40.87 40.97 41.09
SSIM 0.975 0.977 0.979 0.980 0.981

Conclusion
We have proposed a recursive dilated network for CS-MRI.
The network is formed by cascading a series of basic block-
s consisting of a recursive dilation unit and a data fidelity
unit. The recursive reuse of filters can reduce the number
of parameters in the network while maintaining good mod-
el performance. We propagate the measured k-space values
to all levels in the network to reduce information loss. We
also use dilated convolutions to increase the receptive field
without introducing more parameters. The modified short-
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Figure 7: A comparison of the proposed recursive dilation (RDN) network (y-axis) with several CS-MRI inversion methods
(x-axis) on 61 test images. A point above the diagonal line indicates that RDN outperforms the indicated algorithm for that test
image according to PSNR (left) or SSIM (right).

(a) Fully-sampled (b) Sampling-mask (c) Zero-filled (d) FCSA (e) PBDW

(f) PANO (g) GBRWT (h) U-Net (i) DC-CNN (j) RDN

(k) FCSA (l) PBDW (m) PANO (n) GBRWT (o) U-Net (p) DC-CNN (q) RDN

Figure 8: Results on a brain MRI using 30% Cartesian under-sampling.

cut strategy helps the information flow from lower layers to
deeper layers. Our experiments show that the proposed RDN
model can achieve state-of-the-art performance for CS-MRI
while keeping number of free parameter relatively low.
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