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The future of visual computing is rapidly evolving towards seamlessly blending digital content with
our physical world. 3D learning is driving transformative advances across robotics, medical imaging,
extended reality (XR), architecture, and design, fundamentally reshaping human-computer interaction. In
these domains, next-generation AI systems must efficiently perceive and interact with complex physical
environments while recreating them in digital space. This fusion of virtual and physical realms promises
to enhance human perception, productivity, and creativity in unprecedented ways.

My overarching research objective is to develop generalizable 3D foundation models that serves as
cornerstones for immersive and spatial computing technologies. This model leverages few-shot and end-to-
end learning from web-scale data, enabling AI systems to achieve efficient environmental representation,
understanding, and safer interaction. My innovations in few-shot, end-to-end, and semantic 3D
learning have established new benchmarks through four key breakthroughs:

1. Unifying geometric principles and generative priors for state-of-the-art 3D assets creation

2. Self-supervised learning frameworks for reconstructing 3D from minimal 2D image data.

3. Advanced contextual understanding that adapts to complex real-world environments

4. Real-time training and rendering capabilities essential for responsive, safe interactions

▷ Research Thrusts: My research works are upon few-shot 3D learning with geometric principles and
generative priors, ultra-efficient 3D reconstruction and rendering, and a unified 3D foundation model that
bridges the gap between virtual and physical worlds. These advances enable transformative applications
that seamlessly integrate digital information with our physical environment, paving the way for safer and
more responsible AI technologies while catalyzing the next generation of computing platforms.
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Career Goal

Large-scale models evolve rapidly
 in language and 2D but struggle with 3D data.

3D Learning:

Figure 1: Overview of research background, three primary research thrusts, and long-term career goal.

Thrust 1: Few-Shot 3D Learning with Geometric Principles and Generative Priors

Creating photorealistic digital environments often requires dense scene capture with precisely annotated
poses, which are frequently unavailable. My research addresses this fundamental challenge of data
sparsity, particularly the scarcity of camera views or pose parameters. To overcome these constraints,
I combine Geometric Principles with Generative Priors in novel ways. Geometric principles provide
a strong foundation of structural constraints and spatial relationships inherent in the physical world.
Complementing this, generative priors, learned from large datasets, can fill in missing information by
leveraging statistical patterns in shape and appearance. By harnessing both the deterministic nature of
geometry and the probabilistic power of generative models, my synergistic approach allows for designing
architectures that learn effectively from limited data.

My research demonstrates the power of geometric principles to address few-shot challenges in two
key projects. The Cascade Cost Volume [7] for multi-view depth maps decomposes depth estimation
into multiple stages, progressively refining the depth search space based on preliminary estimates and
utilizing a fine-grained feature pyramid. Central to this approach is cascade homography warping, which
calculates matching costs across multiple stages, enabling high-resolution cost volume formulation and
subsequent depth map estimation up to full resolution. Cascade Cost Volume is the first framework
to enable city-scale vision-based reconstruction, with continuously improved accuracy from additional
annotated 3D data. It achieves state-of-the-art performance in GPU memory efficiency, runtime, and
depth accuracy and has become one of the most widely adopted approaches (cited by 800+) for
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Figure 2: Few-shot 3D asset
creation from sparse-view im-
ages [7, 11, 19], panoramas, or
text [15]. Predefined poses are
not required [10]

multi-view stereo (MVS), dense simultaneous localization and mapping
(SLAM), and human modeling. Constructing volumes from image fea-
tures can also enhance pose estimation. Cas6D [10] utilizes a 3D volume
to estimate poses from Top-K candidates, progressively narrowing the
pose search space to the optimal result with the lowest matching cost.
Cas6D effectively addresses common failures in sparse-view scenarios.

In response to the challenge of few-shot view reconstruction, my
research addresses limitations in two complementary approaches: Neural
Radiance Fields (NeRF) and 3D Gaussian Splatting (3D-GS), which
originally require hundreds of captures to reconstruct a 3D scene. My
work SinNeRF [18] and its follow-up NeuralLift-360 [19] overcome
this limitation by creating 3D assets from a single view, leveraging strong
generative diffusion priors to inpaint unseen regions, integrated with
geometric regularizations from monocular depth estimation trained with massive RGB-D data pairs,
to guide 3D optimization in occluded 3D spaces where image observations are unavailable. Then, with
the emergence of 3D Gaussian Splatting, which achieves real-time rendering and high-resolution output
quality, we introduced Few-Shot Gaussian Splatting (FSGS) [11]. FSGS reconstructs 3D environments
from only three images by employing Gaussian densification in empty spaces based on proximity scores to
enhance scene detail and by leveraging monocular depth model priors to regularize scene surfaces. FSGS
accelerates rendering speed by three orders of magnitude compared to NeRF baselines and surpasses all
previous methods in content creation quality and efficiency.

My newest work, DreamScene360 [15], further pushes the boundaries of 3D scene generation by
creating immersive scenes with full 360° coverage from text prompts. DreamScene360 leverages the gen-
erative power of 2D diffusion models and LLM prompt self-refinement to produce high-quality, globally
coherent panoramic images, which are then transformed into 3D representation. By imposing semantic
and geometric constraints on both synthesized and input camera views, it optimizes in 3D to reconstruct
unseen regions, resulting in globally consistent 3D scenes with a full 360° perspective. These few-shot
3D learning works streamline the process of creating digital worlds from limited data sources, making the
customizable creation of digital assets more accessible to users.

Thrust 2: Ultra-Efficient 3D Reconstruction and Rendering

Thrust 1 significantly pushed the boundaries of 3D reconstruction with either few-shot camera poses or
sparse views. However, what if both limitations occur simultaneously, as is often the case in practical
scenarios? Thrust 2 addresses this even more ambitious and practically compelling challenge: 3D recon-
struction directly from sparse, pose-free views. Traditional pipelines involve a complex series of
steps for accurate pose estimation and dense 3D reconstruction, each potentially introducing errors that
propagate through the system. My research significantly simplifies this process by developing efficient end-
to-end frameworks that connect input images with 3D representations, jointly optimizing both camera
parameters and 3D structures under self-supervision, as illustrated in Figure 3.
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Figure 3: End-to-end 3D re-
construction from 2D images with
self-supervision [6].

In InstantSplat [6], we introduce a groundbreaking approach
leveraging the end-to-end 3D system, and synergizing the power of
geometric priors with the capabilities of large foundation models.
InstantSplat utilizes pixel similarity as an objective function between
2D images and the rasterized 2D projections from the optimized 3D
representation. It incorporate a pretrained DUSt3R model [17] to ini-
tialize dense points, while subsequently optimizing camera parameters
and scene attributes using Gaussian Bundle Adjustment efficiently. In-
stantSplat reduces large-scale 3D reconstruction time from 33 min-
utes to just 7 seconds with as few as 3 unposed views, while
significantly improving visual quality and pose metrics. It is also
generally compatible with other point-based representations such as
Mip-Splatting or 2D Gaussian Splatting. My ongoing research, Vide-
oLifter, develops novel algorithms to transform in-the-wild videos of any length into high-quality
3D representations. VideoLifter uses a hierarchical framework to track features across overlapping video
segments, aligning them into a globally consistent 3D structure.

Additionally, my work addresses the challenge of deploying Gaussian Splatting on resource-constrained
devices such as smartphones and headsets. LightGaussian [12] introduces a general framework to re-
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duce redundancy in Gaussian Splats through visibility-based pruning, attribute distillation, and vector
quantization, drawing inspiration from both machine learning and computer graphics. It achieves over
15× compression and 60% faster rendering while preserving reconstruction quality across multiple frame-
works. These approaches facilitate immersive, free-view exploration across extensive reconstructed scenes,
seamlessly merging digital and physical realities. This integration enables high-resolution, photorealistic
human-computer interactions directly derived from everyday captures.

Thrust 3: Semantic 3D Foundation Model: Reconstruction, Understanding and Beyond

Thrust 3 aims to enhance the interaction between digital content and the physical world by developing
semantic 3D foundation models. These models not only reconstruct scenes but also embed a deep
understanding of each primitive. By integrating semantics with geometric representations [13], I strive to
create more engaging experiences using intelligent 3D models with versatile capabilities. My goal is to de-
velop a unified deep model that supports a wide range of downstream reconstruction and interaction tasks.
This approach aims to enable applications from intelligent scene manipulation to advanced understanding
and interaction, paving the way for sophisticated vision systems with spatial and physical awareness.

Our work on Feature 3DGS [20] extends the capabilities of 3D Gaussian Splatting to support a
wide range of 3D functions, including open-vocabulary 3D semantic segmentation, language-guided 3D
editing, and promptable 3D segmentation similar to “Segment Anything”. By learning a structured, lower-
dimensional 3D feature field from 2D foundation models and then upsampling it through a lightweight
convolutional decoder, we achieve greater efficiency in feature field distillation, with faster training and
rendering speeds compared to previous approaches.
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Figure 4: Semantic 3D Foundation
Model [14]: supports both reconstruc-
tion and understanding, and enhances spatial
awareness for other ML models.

My latest work, Large Spatial Model [14] (LSM),
introduces the first real-time framework capable
of predicting 3D geometry, appearance, and se-
mantics from unposed images in a single pass.
LSM utilizes a scalable Transformer-based framework
with cross-view and cross-modal attention to regress se-
mantic anisotropic 3D Gaussians in real-time. LSM
perceives the physical world by learning from data, and
lifts 2D pre-trained models into 3D for consistent 3D
open-vocabulary scene understanding and manipulation.
To support this, LSM employs novel view synthesis
during training as a foundational 3D task, constructing
accurate 3D representations by establishing correspondences among input images and generating new im-
ages without the precomputed camera poses. This method demonstrates significant scalability across large
datasets, necessitating only minimal 3D annotations to progressively refine the representation.

Central to LSM is its capability to encode 3D scenes into compact, low-dimensional latent spaces,
facilitating the reconstruction of complete 3D scenes from these embeddings. Through extensive
training on large 3D and video datasets, LSM’s latent space inherently cultivates spatial awareness from
multiple images, obviating the need of preprocessing for 3D data. Building on this principle, our ongoing
project, Geometric Language Model (GLM), combines spatial awareness in LSM with the general
reasoning capabilities of large language models (LLMs) to enhance spatial reasoning and planning in
intelligent machines, paving the way for models that integrate physical laws into spatially-aware, feed-
forward, and real-time interactions.

Future Research Agenda

My career vision is to advance spatial intelligence through next-generation 3D learning algorithms. Building
on my expertise in Few-shot 3D Learning, End-to-end 3D Contextual Understanding, and Generative AI,
I will pursue four interconnected research directions that address critical challenges in autonomous sys-
tems, scientific discovery, and human-AI interaction. Through collaborations with industry and academic
partners in robotics, healthcare, and hardware, I aim to establish foundational capabilities for the next-
generation computing systems.

End-to-End Robotic Learning. While current large-scale AI models demonstrate exceptional capabil-
ities in 2D and language tasks, they lack the spatial understanding required for precise and diverse robotic
operations. Humans, by contrast, can intuitively learn tasks from video demonstrations and integrate
vision, sound, and touch to interact effectively with environment. My future research aims to bridge this
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gap by leveraging web-scale egocentric videos to track motion and reconstruct objects, environments, and
interactions which could serve as key knowledge targeted for robotic tasks. By distilling large-scale human
activity videos, I aim to develop intelligent generalist robots capable of perceiving, planning, and acting
in 3D with human-like awareness and adaptability.

Building on my expertise in multi-view geometry for scene and object reconstruction [6, 7, 10] and
the interpretation of human behavior from in-the-wild videos [2], I plan to scale data collection efforts
using web-scale egocentric human activity videos to create fine-grained, annotated datasets across di-
verse scenarios with 6-DoF object poses, and human motions. This work will serve as the foundation
for training embodied robots capable of understanding human-environment interactions and generalizing
their manipulation policies to dynamic, real-world conditions. To develop unified foundational models for
robotic tasks, I will focus on spatial awareness and multimodal perception, enabling robots to interpret
3D geometry from visual inputs and integrate visual, tactile, and auditory modalities. Drawing on my
prior work in end-to-end 3D learning [14], multimodal SLAM [4], symbolic processing [5], and multi-task
learning [3,9], I aim to collaborate with experts in robotics and hardware to develop platforms that enable
robust generalization and energy-efficient performance across diverse robotic applications.

Human-Centric Safety Simulation for Autonomous Systems. Advancing spatial intelligence in
autonomous systems demands a rigorous focus on human safety, particularly for vulnerable road users such
as pedestrians and cyclists. Ensuring safety in rare and long-tail scenarios remains a critical challenge,
as current state-of-the-art generative models and simulators often fall short in accurately modeling and
simulating the unpredictable behaviors of non-rigid actors.

Building on my expertise in human modeling [2], scene reconstruction [6], and generative methods [16],
I aim to create simulation platforms that capture the complexity of human behaviors and intensions,
collaborated with industrial partners, such as Nvidia Research. These platforms will integrate advanced
machine learning models to represent non-rigid actors, including their expressions, intentions, and dynamic
actions. The simulator will also incorporate high-quality geometric surface modeling and generative priors
for fine-grained realism and precise control.

3D Consistent Video Generation. Recent advancements in generative AI, particularly in video gen-
eration, hold tremendous potential as infinite data engines in digital media production, extended reality,
and customized manipulation demonstrations. However, the scarcity of 3D annotations significantly limits
these models’ ability to ensure 3D consistency in generated videos.

In contrast, human-captured videos inherently exhibit 3D consistency and physical plausibility. My
research vision is to embed 3D consistency into video generation models by leveraging a self-supervised
pretraining paradigm that captures static geometry and tracks dynamic motion from in-the-wild real-
world videos. Building on my previous work in 3D generation [15,18], this approach aims to enable video
generation models to produce 3D-consistent, cross-frame coherent videos, and could generate accurate
geometric representations with only a small amount of high-quality 3D data for fine-tuning. I will release
datasets and models to accelerate research in generative modeling for autonomy and digital media.

Molecule imaging Reconstruction

Lunar environmental simulation

Figure 5: AI for space and bi-
ological imaging.

Bandwidth-Constrained 3D Reconstruction. Advancing spatial
intelligence for scenarios with strict bandwidth constraints, such as
constructing navigable 3D site models for space exploration or recon-
structing protein structures using cryo-electron microscopy (cryo-EM)
in biological imaging, poses significant challenges. These involve recon-
structing 3D structures from limited or noisy 2D observations of tex-
tureless planar surfaces and visualizing the 3D organization of proteins
and biomolecules from noisy, randomly oriented 2D cryo-EM images.

To address these issues, I will build on my expertise in neural recon-
struction methods [6,11], lunar simulation [1], and medical imaging [8]
and bridge 3D learning with the constraints of real-world scenarios. My
research seeks to solve critical scientific and engineering problems while
fostering interdisciplinary engagement across fields.
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